

## Guidelines to Defra's GHG conversion factors for company reporting

Annexes updated June 2007

<u>Key</u>

light blue purple yellow

- Data entry field Fixed factors used in calculations = =
- Calculation results =

## **Annex 1 - Fuel Conversion Factors**

Last updated: Jun-07

Table 1

| Converting fuel types              | to CO <sub>2</sub> |          |      | Net CV Basis <sup>3</sup>     |                 |  |  |  |
|------------------------------------|--------------------|----------|------|-------------------------------|-----------------|--|--|--|
| Fuel Type                          | Amount used        | Units    | Х    | x kg CO <sub>2</sub> Total kg |                 |  |  |  |
|                                    | per year           |          |      | per unit                      | CO <sub>2</sub> |  |  |  |
| Electricity                        |                    | See Anne | ex 3 | -                             |                 |  |  |  |
| Natural Gas                        |                    | kWh      | х    | 0.206                         |                 |  |  |  |
|                                    |                    | therms   | x    | 6.023                         |                 |  |  |  |
| Gas Oil                            |                    | tonnes   | x    | 3190                          |                 |  |  |  |
|                                    |                    | kWh      | х    | 0.265                         |                 |  |  |  |
|                                    |                    | litres   | х    | 2.674                         |                 |  |  |  |
| Diesel                             |                    | tonnes   | х    | 3164                          |                 |  |  |  |
|                                    |                    | kWh      | х    | 0.263                         |                 |  |  |  |
|                                    |                    | litres   | х    | 2.630                         |                 |  |  |  |
| Petrol                             |                    | tonnes   | х    | 3135                          |                 |  |  |  |
|                                    |                    | kWh      | х    | 0.253                         |                 |  |  |  |
|                                    |                    | litres   | х    | 2.315                         |                 |  |  |  |
| Fuel Oil                           |                    | tonnes   | х    | 3223                          |                 |  |  |  |
|                                    |                    | kWh      | х    | 0.281                         |                 |  |  |  |
| Burning Oil <sup>1</sup>           |                    | tonnes   | х    | 3150                          |                 |  |  |  |
|                                    |                    | kWh      | х    | 0.258                         |                 |  |  |  |
|                                    |                    | litres   | х    | 2.518                         |                 |  |  |  |
| Coal <sup>2</sup>                  |                    | tonnes   | х    | 2457                          |                 |  |  |  |
|                                    |                    | kWh      | х    | 0.346                         |                 |  |  |  |
| LPG                                |                    | kWh      | х    | 0.225                         |                 |  |  |  |
|                                    |                    | therms   | х    | 6.608                         |                 |  |  |  |
|                                    |                    | litres   | х    | 1.498                         |                 |  |  |  |
| Coking Coal                        |                    | tonnes   | х    | 2810                          |                 |  |  |  |
|                                    |                    | kWh      | х    | 0.349                         |                 |  |  |  |
| Aviation Spirit                    |                    | tonnes   | х    | 3128                          |                 |  |  |  |
|                                    |                    | kWh      | х    | 0.250                         |                 |  |  |  |
|                                    |                    | litres   | х    | 2.233                         |                 |  |  |  |
| Aviation Turbine Fuel <sup>1</sup> |                    | tonnes   | х    | 3150                          |                 |  |  |  |
|                                    |                    | kWh      | х    | 0.258                         |                 |  |  |  |
|                                    |                    | litres   | х    | 2.518                         |                 |  |  |  |
| Other Petroleum Gas                |                    | tonnes   | х    | 2894                          |                 |  |  |  |
|                                    |                    | kWh      | х    | 0.217                         |                 |  |  |  |
| Naphtha                            |                    | tonnes   | х    | 3131                          |                 |  |  |  |
|                                    |                    | kWh      | х    | 0.249                         |                 |  |  |  |
| Lubricants                         |                    | tonnes   | х    | 3171                          |                 |  |  |  |
|                                    |                    | kWh      | х    | 0.263                         |                 |  |  |  |
| Petroleum Coke                     |                    | tonnes   | х    | 3410                          |                 |  |  |  |
|                                    |                    | kWh      | х    | 0.361                         |                 |  |  |  |
| Refinery Miscellaneous             |                    | kWh      | х    | 0.259                         |                 |  |  |  |
|                                    |                    | therms   | х    | 7.585                         |                 |  |  |  |

| See Annex 3           x         0.185           x         5.421           x         3190           x         0.251           x         2.674           x         3164           x         0.249           x         0.249           x         0.240           x         0.267           x         0.245           x         0.214           x         0.214           x         0.312           x         0.312           x         0.332           x         0.238           x         0.238< |   | per unit  | CO <sub>2</sub> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------|-----------------|
| x         5.421           x         3190           x         0.251           x         2.674           x         3164           x         0.249           x         2.630           x         3135           x         0.240           x         3123           x         0.245           x         0.245           x         0.214           x         0.214           x         0.214           x         0.214           x         2.810           x         2.810           x         0.332           x         3.128           x         0.233           x         3.150           x         3.150 <tr tbody=""> </tr>           |   | See Annex | 3               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |           |                 |
| x     3190       x     0.251       x     2.674       x     3164       x     0.249       x     2.630       x     3135       x     0.240       x     3.135       x     0.240       x     3.135       x     0.240       x     3.135       x     0.240       x     3.223       x     0.267       x     3.150       x     0.245       x     2.518       x     2.518       x     0.245       x     0.214       x     6.277       x     0.214       x     2.810       x     2.810       x     0.332       x     3.128       x     0.238       x     2.233       x     3.150       x     3.150                                                                                                                                                                                                                                                                                                               | х | 0.185     |                 |
| x         0.251           x         2.674           x         3164           x         0.249           x         2.630           x         3135           x         0.240           x         3135           x         0.240           x         3.135           x         0.240           x         3.135           x         0.240           x         3.135           x         3.0240           x         3.0240           x         3.023           x         0.245           x         0.245           x         2.518           x         2.518           x         2.518           x         0.329           x         0.214           x         6.277           x         1.498           x         2.810           x         0.332           x         3.128           x         0.238           x         3.150           x         3.150           x         0.245                       | х | 5.421     |                 |
| x     2.674       x     3164       x     0.249       x     2.630       x     3135       x     0.240       x     2.315       x     3223       x     0.267       x     3150       x     0.245       x     2.518       x     2.457       x     0.329       x     0.214       x     6.277       x     2.810       x     2.810       x     2.810       x     0.332       x     3128       x     0.238       x     2.233       x     3150       x     3150                                                                                                                                                                                                                                                                                                                                                                                                                                                 | х | 3190      |                 |
| x     3164       x     0.249       x     2.630       x     3135       x     0.240       x     2.315       x     3223       x     0.267       x     3150       x     0.245       x     2.518       x     2.457       x     0.329       x     0.214       x     6.277       x     1.498       x     2810       x     2.332       x     3128       x     0.238       x     2.233       x     3150       x     3150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | х | 0.251     |                 |
| x         0.249           x         2.630           x         3135           x         0.240           x         2.315           x         3223           x         0.267           x         3150           x         0.245           x         2.518           x         2.457           x         0.329           x         0.214           x         6.277           x         1.498           x         2810           x         2810           x         0.332           x         3128           x         0.233           x         3.128           x         0.233           x         3.150           x         3.150           x         0.245                                                                                                                                                                                                                                            | х | 2.674     |                 |
| x     2.630       x     3135       x     0.240       x     2.315       x     3223       x     0.267       x     3150       x     0.245       x     2.518       x     2.457       x     0.329       x     0.214       x     6.277       x     1.498       x     2.810       x     0.332       x     3128       x     0.238       x     2.233       x     3150       x     0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | х | 3164      |                 |
| x     3135       x     0.240       x     2.315       x     3223       x     0.267       x     3150       x     0.245       x     2.518       x     2.457       x     0.329       x     0.214       x     6.277       x     1.498       x     2810       x     0.332       x     3128       x     0.238       x     2.233       x     3150       x     3150       x     0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | х | 0.249     |                 |
| x     0.240       x     2.315       x     3223       x     0.267       x     3150       x     2.518       x     2.518       x     2.457       x     0.329       x     0.214       x     6.277       x     1.498       x     2810       x     0.332       x     3128       x     0.238       x     2.233       x     3150       x     0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | х | 2.630     |                 |
| x     2.315       x     3223       x     0.267       x     3150       x     0.245       x     2.518       x     2457       x     0.329       x     0.214       x     6.277       x     1.498       x     2810       x     0.332       x     3128       x     0.238       x     2.233       x     3150       x     0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | х | 3135      |                 |
| x     3223       x     0.267       x     3150       x     0.245       x     2.518       x     2457       x     0.329       x     0.214       x     6.277       x     1.498       x     2810       x     0.332       x     3128       x     0.238       x     2.233       x     3150       x     0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | х | 0.240     |                 |
| x     0.267       x     3150       x     0.245       x     2.518       x     2457       x     0.329       x     0.214       x     6.277       x     1.498       x     2810       x     0.332       x     3128       x     0.238       x     2.233       x     3150       x     0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | х | 2.315     |                 |
| x     3150       x     0.245       x     2.518       x     2457       x     0.329       x     0.214       x     6.277       x     1.498       x     2810       x     0.332       x     3128       x     0.238       x     2.233       x     3150       x     0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | х | 3223      |                 |
| x     0.245       x     2.518       x     2457       x     0.329       x     0.214       x     6.277       x     1.498       x     2810       x     0.332       x     3128       x     0.238       x     2.233       x     3150       x     0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | х | 0.267     |                 |
| x     2.518       x     2457       x     0.329       x     0.214       x     6.277       x     1.498       x     2810       x     0.332       x     3128       x     0.238       x     2.233       x     3150       x     0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | х | 3150      |                 |
| x     2457       x     0.329       x     0.214       x     6.277       x     1.498       x     2810       x     0.332       x     3128       x     0.238       x     2.233       x     3150       x     0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | х | 0.245     |                 |
| x     0.329       x     0.214       x     6.277       x     1.498       x     2810       x     0.332       x     3128       x     0.238       x     2.233       x     3150       x     0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | х | 2.518     |                 |
| x     0.214       x     6.277       x     1.498       x     2810       x     0.332       x     3128       x     0.238       x     2.233       x     3150       x     0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x | 2457      |                 |
| x     6.277       x     1.498       x     2810       x     0.332       x     3128       x     0.238       x     2.233       x     3150       x     0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | х | 0.329     |                 |
| x     1.498       x     2810       x     0.332       x     3128       x     0.238       x     2.233       x     3150       x     0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | х | 0.214     |                 |
| x     2810       x     0.332       x     3128       x     0.238       x     2.233       x     3150       x     0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | х | 6.277     |                 |
| x     0.332       x     3128       x     0.238       x     2.233       x     3150       x     0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | х | 1.498     |                 |
| x     3128       x     0.238       x     2.233       x     3150       x     0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | х | 2810      |                 |
| x 0.238<br>x 2.233<br>x 3150<br>x 0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | х | 0.332     |                 |
| x 2.233<br>x 3150<br>x 0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | х | 3128      |                 |
| x 3150<br>x 0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | х | 0.238     |                 |
| x 0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | х |           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | х |           |                 |
| x 2.518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | х |           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | х |           |                 |
| x 2894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |           |                 |
| x 0.206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |           |                 |
| x 3131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |           |                 |
| x 0.237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |           |                 |
| x 3171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |           |                 |
| x 0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |           |                 |
| x 3410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |           |                 |
| x 0.343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |           |                 |
| x 0.246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - |           |                 |
| x 7.214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | х | 7.214     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |           | 0               |

**Gross CV Basis** 

Total kg

x kg CO<sub>2</sub>

Sources

UK Greenhouse Gas Inventory for 2005 (AEA Energy & Environment) Digest of UK Energy Statistics (DTI)

Notes

- <sup>1</sup> Burning oil is also known as kerosene or paraffin used for heating systems. Aviation Turbine fuel is a similar kerosene fuel specifically refined to a higher quality for aviation.
- <sup>2</sup> Average emission factor for coal used in sources other than power stations and domestic, i.e. industry sources including collieries, Iron & Steel, Autogeneration, Cement production, Lime production, Other industry, Miscellaneous, Public Sector, Stationary combustion - railways and Agriculture. Users who wish to use coal factors for types of coal used in specific industry applications should use the factors given in the UKETS.
- <sup>3</sup> Emission factors calculated on a Net Calorific Value basis. Energy and emissions are currently calculated on a Gross Calorific Value basis in the UK, however it is anticipated that in the near future calculations will be moved to a Net Calorific Value basis, which is also consistent with the European Union Emission Trading Scheme (EUETS) for CO<sub>2</sub> emissions.

<sup>4</sup> Emission factors calculated on a Gross Calorific Value basis

### Annex 2 - Combined Heat and Power - Imports and Exports

Last updated: Jun-05

If you use all the output of a Combined Heat and Power plant to meet the energy needs of your business, you need not attribute the emissions from the plant between the energy and heat output. You can therefore calculate the total plant emissions from the fuel used with the standard conversion factors at Annex 1.

If, however, you export energy or heat to another business (or import from another business), you will need to split the emissions between the energy and heat before calculating the appropriate proportion of emissions which should be deducted from (or added to) your company total.

Because it is typically roughly twice as efficient to generate heat from fossil fuels as it is to generate electricity, you can attribute the emissions from the CHP plant 1:2 and calculate emissions per kWh of heat or electricity produced by the CHP plant using the appropriate formula below:

Emissions (in kgCO2) per kWh electricity = <u>twice total emissions (in kgCO<sub>2</sub>)</u> twice total electricity produced + total heat produced (in kWh)

Emissions (in kgCO2) per kWh heat = <u>total emissions (in kgCO<sub>2</sub>)</u> twice total electricity produced + total heat produced (in kWh)

| Calculate emissi      | Calculate emissions per kWh electricity |            |                         |  |  |  |  |  |
|-----------------------|-----------------------------------------|------------|-------------------------|--|--|--|--|--|
| Total emissions       | Total electricity                       | Total heat | kg CO <sub>2</sub> /kWh |  |  |  |  |  |
| (kg CO <sub>2</sub> ) | produced                                | produced   | elecricity              |  |  |  |  |  |
|                       |                                         |            |                         |  |  |  |  |  |

| Calculate emissions per kWh heat         |                               |                        |                              |  |  |  |  |
|------------------------------------------|-------------------------------|------------------------|------------------------------|--|--|--|--|
| Total emissions<br>(kg CO <sub>2</sub> ) | Total electricity<br>produced | Total heat<br>produced | kg CO <sub>2</sub> /kWh heat |  |  |  |  |
|                                          |                               |                        |                              |  |  |  |  |

## Annex 3 - Electricity Conversion Factors from 1990 to 2005

Last updated: Jun-07

Table 2

| Electricity conversion facto           |                              |                            |                          |
|----------------------------------------|------------------------------|----------------------------|--------------------------|
| Year                                   | Amount used per<br>year, kWh | kg CO <sub>2</sub> per kWh | Total kg CO <sub>2</sub> |
| 1990                                   |                              | 0.77000                    |                          |
| 1991                                   |                              | 0.75000                    |                          |
| 1992                                   |                              | 0.70000                    |                          |
| 1993                                   |                              | 0.62000                    |                          |
| 1994                                   |                              | 0.61000                    |                          |
| 1995                                   |                              | 0.58000                    |                          |
| 1996                                   |                              | 0.56616                    |                          |
| 1997                                   |                              | 0.51935                    |                          |
| 1998                                   |                              | 0.51808                    |                          |
| 1999                                   |                              | 0.48291                    |                          |
| 2000                                   |                              | 0.51022                    |                          |
| 2001                                   |                              | 0.52581                    |                          |
| 2002                                   |                              | 0.50974                    |                          |
| 2003                                   |                              | 0.52628                    |                          |
| 2004                                   |                              | 0.52659                    |                          |
| 2005                                   |                              | 0.52657                    |                          |
| Rolling Average <sup>5</sup>           |                              | 0.52300                    |                          |
| Long-term marginal factor <sup>6</sup> |                              | 0.43000                    |                          |
| Electricity from CHP <sup>7</sup>      |                              | 0.29500                    |                          |
| Renewables <sup>8</sup>                |                              | 0                          |                          |
| Total                                  |                              |                            |                          |

Sources

Notes

Based on UK Greenhouse Gas Inventory for 2005 (AEA Energy & Environment) according to the amount of CO<sub>2</sub> emitted from major power stations

per unit of electricity consumed from the DTI's Digest of UK Energy Statistics (DUKES) 2006 Table 5.6

The electricity conversion factors given are the average carbon dioxide emission from the UK national grid per kWh of electricity used at the point of final consumption. These factors include only carbon emissions at UK power stations and do not include emissions resulting from production and delivery of fuel to these power stations (i.e. from gas rigs, refineries and collieries, etc.).

- <sup>5</sup> A rolling average of emission factors for the last 5 years for which data is available (2001-2005). This is to help reduce short-term annual variability with year on year comparisons for the purposes of these Guidelines. The rolling 5 year average factor is a suitable metric for calculating the carbon emissions of a company's electricity use. Emissions reductions from activities that bring about short term electricity savings (such as switching off lights ad computers a night, reducing air conditioning and heating use, etc.) can be calculated using this factor.
- <sup>6</sup> The long-term marginal factor assumes that, over a long time period (a decade or more) avoided electricity use will displace generation at a new Combined Cycle Gas Turbine (CCGT) plant. Policies and measures that produce long-term reductions in electricity use should therefore use this factor to assess what carbon saving will result. When calculating emissions reductions based on long term investment decisions (for example, building zero carbon housing or business premises, investing in on-site renewables etc.) companies should use this factor. Carbon savings used for the purposes of Climate Change Agreements (CCAs) have historically been calculated using this factor, and it should continue to be used for this purpose.
- <sup>7</sup> The conversion factor for electricity from CHP may be used only for the percentage of the electricity sourced from your supplier that has been produced from CHP meeting the 'Good Quality CHP' criterion of the CHPQA programme. If you use all the output of a Combined Heat and Power plant to meet the energy needs of your business, you need not attribute the emissions from the plant between the energy and heat output please refer to Annex 2 for this calculation. Otherwise the regular electricity emission factor should be applied
- <sup>8</sup> A zero conversion factor can only be applied if your company has entered into a renewables source contract with an energy supplier, that has acquired Climate Change Levy Exemption Certificates (LECs) for the electricity supplied to you as a non-domestic electricity consumer.

## **Annex 4 - Typical Process Emissions**

| Last updated: | Jun-05 |
|---------------|--------|
|---------------|--------|

There are six main greenhouse gases that are produced as a by-product by industry:

Carbon Dioxide CO2 Methane CH4 Nitrous oxide N2O Perfluorocarbons PFC Sulphur Hexafluoride SF6 Hydrofluorocarbons HFC

Below is a table that highlights the gases that are likely to be produced by a variety of the industries in the UK that are most likely to have a significant impact on climate change. The dark areas represent the gases that are likely to be produced.

#### Table 3

|            | related emissions <sup>9</sup>              |                 |        |                  |                                   |        |     |
|------------|---------------------------------------------|-----------------|--------|------------------|-----------------------------------|--------|-----|
| Process    |                                             |                 |        |                  |                                   |        | _   |
|            |                                             | CO <sub>2</sub> | $CH_4$ | N <sub>2</sub> O | PFC                               | $SF_6$ | HFC |
| Mineral    | Cement Production                           |                 |        |                  |                                   |        |     |
| Products   | Lime Production                             |                 |        |                  |                                   |        |     |
|            | Limestone Use <sup>10</sup>                 |                 |        |                  |                                   |        |     |
|            | Soda Ash Production and Use                 |                 |        |                  |                                   |        |     |
|            | Fletton Brick Manufacture <sup>11</sup>     |                 |        |                  |                                   |        |     |
| Chemical   | Ammonia                                     |                 |        |                  |                                   |        |     |
| Industry   | Nitric Acid                                 |                 |        |                  |                                   |        |     |
|            | Adpic Acid                                  |                 |        |                  | ission<br>PFC SF <sub>6</sub><br> |        |     |
|            | Urea                                        |                 |        |                  |                                   |        |     |
|            | Carbides                                    |                 |        |                  |                                   |        |     |
|            | Caprolactam                                 |                 |        |                  |                                   |        |     |
|            | Petrochemicals                              |                 |        |                  |                                   |        |     |
| Metal      | Iron, Steel and Ferroalloys                 |                 |        |                  |                                   |        |     |
| Production | Aluminium                                   |                 |        |                  |                                   |        |     |
|            | Magnesium                                   |                 |        |                  |                                   |        |     |
|            | Other Metals                                |                 |        |                  |                                   |        |     |
| Energy     | Coal mining                                 |                 |        |                  |                                   |        |     |
| Industry   | Solid fuel transformation                   |                 |        |                  |                                   |        |     |
|            | Oil production                              |                 |        |                  |                                   |        |     |
|            | Gas production and distribution             |                 |        |                  |                                   |        |     |
|            | Venting and flaring from oil/gas production |                 |        |                  |                                   |        |     |
| Other      | Production of Halocarbons                   |                 |        |                  |                                   |        |     |
|            | Use of Halocarbons and SF <sub>6</sub>      |                 |        |                  |                                   |        |     |
|            | Organic waste management                    |                 |        |                  |                                   |        |     |

Sources

<u>Greenhouse Gas Inventory Reference Manual, Revised 1996 IPCC Guidelines for National Greenhouse</u> <u>Gas Inventories (IPCC, 1997)</u>

adapted for UK processes by netcen (now AEA Energy & Environment)

- <sup>9</sup> These process related emissions refer to the types of processes that are used specifically in the UK. Process emissions might be slightly different for processes operated in other countries.
- <sup>10</sup> For use of limestone in Flue Gas Desulphurisation (FGD) and processes such as those in the glass industry. Not all uses of limestone release CO<sub>2</sub>.
- <sup>11</sup> This is specific to Fletton brick manufacture at the mineral processing stage, a process that uses clay with high organic content. Other types of brick manufacturing in the UK do not release Greenhouse Gases during the processing stage

# Annex 5 - Conversion Factors for Greenhouse Gas Process Emissions (including emissions from refrigerants and air conditioning systems)

Table 4

| Factors for Process Emissions |                                         |   |                      |                                           |  |  |  |  |  |
|-------------------------------|-----------------------------------------|---|----------------------|-------------------------------------------|--|--|--|--|--|
| Emission                      | Amount<br>Emitted per<br>Year in tonnes | х | Conversion<br>Factor | Total kg<br>CO <sub>2</sub><br>equivalent |  |  |  |  |  |
| CO <sub>2</sub>               |                                         | х | 1,000                |                                           |  |  |  |  |  |
| Methane                       |                                         | х | 21,000               |                                           |  |  |  |  |  |
| Nitrous Oxide                 |                                         | х | 310,000              |                                           |  |  |  |  |  |
| HFC - 125                     |                                         | х | 2,800,000            |                                           |  |  |  |  |  |
| HFC - 134                     |                                         | х | 1,000,000            |                                           |  |  |  |  |  |
| HFC - 134a                    |                                         | х | 1,300,000            |                                           |  |  |  |  |  |
| HFC - 143                     |                                         | х | 300,000              |                                           |  |  |  |  |  |
| HFC - 143a                    |                                         | х | 3,800,000            |                                           |  |  |  |  |  |
| HFC - 152a                    |                                         | х | 140,000              |                                           |  |  |  |  |  |
| HFC - 227ea                   |                                         | х | 2,900,000            |                                           |  |  |  |  |  |
| HFC - 23                      |                                         | х | 11,700,000           |                                           |  |  |  |  |  |
| HFC - 236fa                   |                                         | х | 6,300,000            |                                           |  |  |  |  |  |
| HFC - 245ca                   |                                         | х | 560,000              |                                           |  |  |  |  |  |
| HFC - 32                      |                                         | х | 650,000              |                                           |  |  |  |  |  |
| HFC - 41                      |                                         | х | 150,000              |                                           |  |  |  |  |  |
| HFC - 43 - 10mee              |                                         | х | 1,300,000            |                                           |  |  |  |  |  |
| Perfluorobutane               |                                         | х | 7,000,000            |                                           |  |  |  |  |  |
| Perfluoromethane              |                                         | х | 6,500,000            |                                           |  |  |  |  |  |
| Perfluoropropane              |                                         | х | 7,000,000            |                                           |  |  |  |  |  |
| Perfluoropentane              |                                         | х | 7,500,000            |                                           |  |  |  |  |  |
| Perfluorocyclobutane          |                                         | х | 8,700,000            |                                           |  |  |  |  |  |
| Perfluoroethane               |                                         | х | 9,200,000            |                                           |  |  |  |  |  |
| Perfluorohexane               |                                         | х | 7,400,000            |                                           |  |  |  |  |  |
| SF <sub>6</sub>               |                                         | х | 23,900,000           |                                           |  |  |  |  |  |
| Total                         |                                         |   |                      | 0                                         |  |  |  |  |  |

Sources

The conversion factors in the table above incorporate global warming potential (GWP) values published by the IPCC in its Second Assessment Report (Climate Change 1995. The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. (Eds. J.T Houghton et al). Published for the Intergovernmental Panel on Climate Change by Cambridge University Press 1996). Revised GWP values have since been published by the IPCC in the Third Assessment Report (2001) but current UNFCCC Guidelines on Reporting and Review, adopted before the publication of the Third Assessment Report, require emission estimates to be based on the GWPs in the IPCC Second Assessment Report.

Notes Not all refrigerants in use are classified as greenhouse gases for the purposes of the Climate Change Programme (e.g. CFCs, HCFCs). GWP values for refrigerant HFC blends should be calculated on the basis of the percentage blend composition (e.g. the GWP for R404a that comprises is 44% HFC125, 52% HFC143a and 4% HFC134a is 2800x0.44 + 3800x0.52 + 1300x0.04 = 3260).

## Annex 6 - Passenger Transport Conversion Tables

Last updated: Jun-07

#### Table 5a

| Fuel used             |   | Total units used | Units  | Х | kg CO <sub>2</sub> per         | Total kg        |
|-----------------------|---|------------------|--------|---|--------------------------------|-----------------|
|                       |   |                  |        |   | kg CO <sub>2</sub> per<br>unit | CO <sub>2</sub> |
| Petrol                |   |                  | litres |   | 2.3154                         |                 |
| Diesel                |   |                  | litres |   | 2.6304                         |                 |
| Compressed Natural Ga | s |                  | kg     |   | 2.7278                         |                 |
| Liquid Petroleum gas  |   |                  | litres |   | 1.4975                         |                 |
| Total                 |   |                  |        |   |                                |                 |

 Sources
 UK Greenhouse Gas Inventory for 2005 (produced for Defra by AEA Energy & Environment).

 Digest of UK Energy Statistics (DTI).

 Carbon factors for fuels (UKPIA, 2004)

 Notes
 Emission factors calculated on a Net Calorific Value basis. Energy and emissions are currently calculated on a

Emission factors calculated on a Net Calorific Value basis. Energy and emissions are currently calculated on a Gross Calorific Value basis in the UK, however it is anticipated that in the near future calculations will be moved to a Net Calorific Value basis, which is also consistent with the European Union Emission Trading Scheme (EUETS) for CO<sub>2</sub> emissions

1 imperial gallon (UK) = 4.546 litres

#### Table 6a

| Passenger Road Transport Conversion Factors: Petrol Cars |                       |       |   |                                |                             |  |  |
|----------------------------------------------------------|-----------------------|-------|---|--------------------------------|-----------------------------|--|--|
| Size of car                                              | Total units travelled | Units | x | kg CO <sub>2</sub> per<br>unit | Total kg<br>CO <sub>2</sub> |  |  |
| Small petrol car, up to 1.4 litre engine                 |                       | miles | х | 0.2947                         |                             |  |  |
|                                                          |                       | km    | х | 0.1831                         |                             |  |  |
| Medium petrol car, from 1.4 - 2.0                        |                       | miles | х | 0.3479                         |                             |  |  |
| litres                                                   |                       | km    | х | 0.2162                         |                             |  |  |
| Large petrol cars, above 2.0 litres                      |                       | miles | х | 0.4770                         |                             |  |  |
|                                                          |                       | km    | х | 0.2964                         |                             |  |  |
| Average petrol car                                       |                       | miles | х | 0.3372                         |                             |  |  |
|                                                          |                       | km    | х | 0.2095                         |                             |  |  |
| Total for petrol cars                                    |                       |       |   |                                | 0                           |  |  |

#### Table 6b

| Passenger Road Transport Conversion Factors: Diesel Cars |                       |       |   |                                |                 |  |  |
|----------------------------------------------------------|-----------------------|-------|---|--------------------------------|-----------------|--|--|
| Size of car                                              | Total units travelled | Units | Х | kg CO <sub>2</sub> per<br>unit | Total kg<br>CO₂ |  |  |
| Small diesel car, up to 1.7 litre or under               |                       | miles | х | 0.2425                         |                 |  |  |
|                                                          |                       | km    | х | 0.1507                         |                 |  |  |
| Medium diesel car, from 1.7 to                           |                       | miles | х | 0.3027                         |                 |  |  |
| 2.0 litre                                                |                       | km    | х | 0.1881                         |                 |  |  |
| Large diesel car, over 2.0 litre                         |                       | miles | х | 0.4240                         |                 |  |  |
|                                                          |                       | km    | х | 0.2635                         |                 |  |  |
| Average diesel car                                       |                       | miles | х | 0.3197                         |                 |  |  |
|                                                          |                       | km    | х | 0.1987                         |                 |  |  |
| Total for diesel cars                                    |                       |       |   |                                | 0               |  |  |

#### Table 6c

| Passenger Road Transport Conversion Factors: Petrol Hybrid Cars |                       |       |   |                                |                             |  |  |
|-----------------------------------------------------------------|-----------------------|-------|---|--------------------------------|-----------------------------|--|--|
| Size of car                                                     | Total units travelled | Units | X | kg CO <sub>2</sub> per<br>unit | Total kg<br>CO <sub>2</sub> |  |  |
| Medium petrol hybrid car                                        |                       | miles | х | 0.2031                         |                             |  |  |
|                                                                 |                       | km    | х | 0.1262                         |                             |  |  |
| Large petrol hybrid car                                         |                       | miles | х | 0.3604                         |                             |  |  |
|                                                                 |                       | km    | х | 0.2240                         |                             |  |  |
| Total for hybrid petrol cars                                    |                       |       |   |                                | 0                           |  |  |

Table 6d

| Passenger Road Transpo     | rt Conversion Facto   |       |   |                                |                             |
|----------------------------|-----------------------|-------|---|--------------------------------|-----------------------------|
| Size of car                | Total units travelled | Units |   | kg CO <sub>2</sub> per<br>unit | Total kg<br>CO <sub>2</sub> |
| Average car (unknown fuel) |                       | miles | х | 0.3340                         |                             |
|                            |                       | km    | х | 0.2075                         |                             |
| Total for average cars     |                       |       |   |                                | 0                           |

Sources Notes Revised factors developed by AEA Energy & Environment and agreed with DfT (2007)

These factors are estimated average values for the UK car fleet in 2005 travelling on average trips in the UK. They are calculated based on data from SMMT on new car  $CO_2$  emissions from 1997 to 2005 combined with factors from TRL as functions of average speed of vehicle derived from test data under real world testing cycles and an uplift of 15% agreed with DfT to take into account further real-world driving effects on emissions relative to test-cycle based data.

The hybrid car factors are calculated based on data new car  $CO_2$  emissions averaged accross the main 4 hybrid vehicles currently available on the market and an uplift of 15% agreed with DfT to take into account real-world driving effects on emissions relative to test-cycle based data.

Real world effects not covered in regular test cycles include use of accessories (air con, lights, heaters, etc), vehicle payload (only driver +25kg is considered in tests, no passengers or further luggage), poor maintenance (tyre under inflation, maladjusted tracking, etc), gradients (tests effectively assume a level road), weather, harsher driving style, etc.

More accurate calculation of emissions can be made using the actual fuel consumed, where available, and the emission factors in Table 5a. Alternatively if a figure for a specific car's fuel consumption (e.g. in miles per gallon, mpg) is known, then the  $CO_2$  can be calculated from the total mileage and the Table 5a factors.

Table 7

| Passenger Road Transpo        |                       |       |   |                                |                             |
|-------------------------------|-----------------------|-------|---|--------------------------------|-----------------------------|
| Size of motorcycle            | Total units travelled | Units | X | kg CO <sub>2</sub> per<br>unit | Total kg<br>CO <sub>2</sub> |
| Small petrol motorbike        |                       | miles | х | 0.1173                         |                             |
| (mopeds/scooters up to 125cc) |                       | km    | х | 0.0729                         |                             |
| Medium petrol motorbike       |                       | miles | х | 0.1511                         |                             |
| (125-500cc)                   |                       | km    | х | 0.0939                         |                             |
| Large petrol motorbike        |                       | miles | х | 0.2069                         |                             |
| (over 500cc)                  |                       | km    | х | 0.1286                         |                             |
| Average petrol motorbike      |                       | miles | х | 0.1718                         |                             |
| (unknown engine size)         |                       | km    | х | 0.1067                         |                             |
| Total for motorcycles         |                       |       |   |                                | (                           |

Sources Notes Revised factors developed by AEA Energy & Environment and agreed with DfT (2007)

These factors are based on calculations of average emissions data by size category, based data reproduced from ACEM (European Motorcycle Manufacturers Association) – sourced from the European Commission's Joint Research Centre. The original data is available at:

http://www.acembike.org/motorcycles&society/pressreleases/MS3-Environment-LMercanti.pdf

More accurate calculation of emissions can be made using the actual fuel consumed, where available, and the emission factors in Table 5a. Alternatively if a figure for a specific motorbike's fuel consumption (e.g. in miles per gallon, mpg) is known, then the CO<sub>2</sub> can be calculated from the total mileage and the Table 5a factors.

#### Table 8

| Bus and Rail P    | assenger Transport Conver |                                  |   |                               |                             |
|-------------------|---------------------------|----------------------------------|---|-------------------------------|-----------------------------|
| Method of travel  |                           | Passenger kms<br>travelled (pkm) | Х | kg CO <sub>2</sub> per<br>pkm | Total kg<br>CO <sub>2</sub> |
| Bus <sup>12</sup> |                           |                                  | х | 0.0891                        |                             |
| Rail              | national rail 13          |                                  | х | 0.0602                        |                             |
|                   | light rail 14             |                                  | х | 0.0650                        |                             |
|                   | underground <sup>15</sup> |                                  | х | 0.0526                        |                             |
| Total             |                           |                                  |   |                               | 0                           |

Sources Notes Department for Transport and AEA Energy & Environment, 2007

- <sup>12</sup> The bus factors are calculated based on fleet average gCO2/km for all bus class and journey data from the UK Greenhouse Gas Inventory and an average load factor of 9.2 calculated using total bus vehicle km and passenger km from Transport Statistics Great Britain (TSGB).
- <sup>13</sup> The national rail factor refers to an average emission per passenger kilometre for diesel and electric trains in 2005. The calculation of the factor is based on the total electricity and diesel consumed by the railways in 2005/06 from the DfT National Modelling Framework Environment Module, and DfT transport statistics on the total number of passenger kilometres for 2005/06. The factor for conversion of units of diesel and electricity into CO<sub>2</sub> are based on the factors in Table 1 for diesel and the 2005 grid electricity factor in Table 2.
- <sup>14</sup> The light rail factors were based on an average of factors for the Docklands Light Rail (DLR) service, the Manchester Metrolink and the Croydon Tramlink. The factors for these light rail systems were based on annual electricity consumption and passenger km data provided by the network operators in 2005 (referring to consumption in 2003/04) and a CO<sub>2</sub> emission factor for electricity generation on the national grid from the UK Greenhouse Gas Inventory.
- <sup>15</sup> The Underground rail factor is based on the Underground's annual electricity consumption and uses corresponding passenger km figures for the Underground from Transport Statistics Great Britain.

#### Table 9

Notes

| Method of travel  |                          | Passenger kms<br>travelled (pkm) |   | kg CO <sub>2</sub> per<br>pkm <sup>16</sup> | х | km uplift<br>factor <sup>17</sup> | Total kg<br>CO <sub>2</sub> |
|-------------------|--------------------------|----------------------------------|---|---------------------------------------------|---|-----------------------------------|-----------------------------|
| Air <sup>18</sup> | long haul international  |                                  | х | 0.1056                                      | х | 109%                              |                             |
|                   | short haul international |                                  | х | 0.1304                                      | х | 109%                              |                             |
|                   | domestic                 |                                  | х | 0.1580                                      | х | 109%                              |                             |
| Total             |                          |                                  |   |                                             |   |                                   | (                           |

#### Source Department for Transport and AEA Energy & Environment, 2007

These emissions factors are intended to be an aggregate representation of the typical emissions per passenger km from illustrative types of aircraft for the 3 types of air services. Actual emissions will vary significantly according to the type of aircraft in use, the load, cabin class, etc.

- <sup>16</sup> The emission factors **do not** include additional impacts of Radiative Forcing (i.e. non-CO<sub>2</sub> climate change impacts) and are designed to be used in conjunction with great circle distances. The total climate impacts of aviation due to Radiative Forcing are estimated to be up to 2-4 times those of CO<sub>2</sub> alone, however the science of Radiative Forcing is currently uncertain.
- <sup>17</sup> The 9% uplift factor comes from the IPCC Aviation and the global Atmosphere 8.2.2.3, which states that 9-10% should be added to take into account non-direct routes (i.e. not along the straight line great circle distances between destinations) and delays/circling.

<sup>18</sup> The emissions factors are based on typical aircraft fuel burn over illustrative trip distances listed in the EMEP/CORINAIR Emissions Inventory Guidebook (EIG 2006) – available at the EEA website at: http://reports.eea.europa.eu/EMEPCORINAIR4/en/B851vs2.4.pdf

The long haul estimate is based on a flight length from the Guidebook of of 6482 km, short haul 1108km and domestic 463km. Actual flight distances do however vary significantly, as demonstrated in the examples in the following tables. Domestic flights are between UK airports, short haul international flights are typically to Europe, and long haul international flights are typically to non-European destinations.

|--|

| From London to:      |                                     |               |
|----------------------|-------------------------------------|---------------|
| Area                 | Airport                             | Distance (km) |
| North Africa         | Abu Simbel/Sharm El Sheikh, Egypt   | 3300          |
| Southern Africa      | Johannesburg/Pretoria, South Africa | 9000          |
| Middle East          | Dubai, UAE                          | 5500          |
| North America        | New York (JFK), USA                 | 5600          |
| North America        | Los Angeles California, USA         | 8900          |
| South America        | Sao Paulo, Brazil                   | 9400          |
| Indian sub-continent | Bombay/Mumbai, India                | 7200          |
| Far East             | Hong Kong                           | 9700          |
| Australasia          | Sydney, Australia                   | 17000         |

Source

Distances based on International Passenger Survey (Office for National Statistics) calculations using airport geographic information.

#### Illustrative short haul flight distances

| From London to: |                           |               |
|-----------------|---------------------------|---------------|
| Area            | Airport                   | Distance (km) |
| Europe          | Amsterdam Netherlands     | 400           |
| Europe          | Prague (Ruzyne) Czech Rep | 1000          |
| Europe          | Malaga Spain              | 1700          |
| Europe          | Athens Greece             | 1500          |

Source

Distances based on International Passenger Survey (Office for National Statistics) calculations using airport geographic information.

## Annex 7 - Freight Transport Conversion Tables

|         | Jun-05                                                                                                                                                                                                               |                                                                                               |                                          |                           |                                |                             |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------|---------------------------|--------------------------------|-----------------------------|
| able 5b |                                                                                                                                                                                                                      |                                                                                               |                                          |                           |                                |                             |
|         | Standard road transpo                                                                                                                                                                                                | rt fuel conversion facto                                                                      | ors                                      |                           |                                |                             |
|         | Fuel used                                                                                                                                                                                                            | Total units used                                                                              | Units                                    | ×                         | kg CO <sub>2</sub> per<br>unit | Total kg<br>CO <sub>2</sub> |
|         | Petrol                                                                                                                                                                                                               |                                                                                               | litres                                   |                           | 2.3154                         |                             |
|         | Diesel                                                                                                                                                                                                               |                                                                                               | litres                                   |                           | 2.6304                         |                             |
|         | Compressed Natural Gas                                                                                                                                                                                               |                                                                                               | kg                                       |                           | 2.7278                         |                             |
|         | Liquid Petroleum gas                                                                                                                                                                                                 |                                                                                               | litres                                   |                           | 1.4975                         |                             |
|         | Total                                                                                                                                                                                                                |                                                                                               |                                          |                           |                                | 0                           |
| rces    | UK Greenhouse Gas Inventory<br>Digest of UK Energy Statistics<br>Carbon factors for fuels (UKPI,<br>Emission factors calculated or<br>Calorific Value basis in the U<br>Calorific Value basis, which is<br>emissions | <u>(DTI)</u><br>A, 2004)<br>a A Net Calorific Value basis.<br>K, however it is anticipated th | Energy and emissi<br>nat in the near fut | ons are ci<br>ure calcula | urrently calculate             | oved to a Net               |
|         |                                                                                                                                                                                                                      |                                                                                               |                                          |                           |                                |                             |

Detailed work is continuing on establishing revised factors for this sector. Once this is complete the factors will be published

#### Table 10

## Other freight transport mileage conversion factors

Detailed work is continuing on establishing revised factors for this sector. Once this is complete the factors will be published